Identification of Low-Dimensional Energy Containing / Flux Transporting Eddy Motion in the Atmospheric Surface Layer Using Wavelet Thresholding Methods
نویسندگان
چکیده
The partitioning of turbulent perturbations into a ‘‘low-dimensional’’ active part responsible for much of the turbulent energy and fluxes and a ‘‘high-dimensional’’ passive part that contributes little to turbulent energy and transport dynamics is investigated using atmospheric surface-layer (ASL) measurements. It is shown that such a partitioning scheme can be achieved by transforming the ASL measurements into a domain that concentrates the low-dimensional part into few coefficients and thus permits a global threshold of the remaining coefficients. In this transformation–thresholding approach, Fourier rank reduction and orthonormal wavelet and wavelet packet methods are considered. The efficiencies of these three thresholding methods to extract the events responsible for much of the heat and momentum turbulent fluxes are compared for a wide range of atmospheric stability conditions. The intercomparisons are performed in four ways: (i) compression ratios, (ii) energy conservation, (iii) turbulent flux conservation, and (iv) finescale filtering via departures from Kolmogorov’s K41 power laws. For orthonormal wavelet and wavelet packets analysis, wavelet functions with varying time–frequency localization properties are also considered. The study showed that wavelet and wavelet packet Lorentz thresholding can achieve high compression ratios (98%) with minimal loss in energy (3% loss) and fluxes (4%). However, these compression ratios and energy and flux conservation measures are comparable to the linear Fourier rank reduction method if a Lorentz threshold function is applied to the latter. Finally, it is demonstrated that orthonormal wavelet and wavelet packets thresholding are insensitive to the analyzing wavelet.
منابع مشابه
of ISDS 96 - 23 , Duke UniversityIDENTIFICATION OF LOW - DIMENSIONAL ENERGYCONTAINING / FLUX TRANSPORTING EDDYMOTION IN THE ATMOSPHERIC SURFACE LAYERUSING WAVELET
The partitioning of turbulent perturbations into a \low-dimensional" part responsible for much of the turbulent energy and uxes and a \high-dimensional" passive part that contributes little to turbulent energy and transport dynamics is investigated using atmospheric surface layer (ASL) measurements. It is shown that such a partitioning scheme can be achieved by transforming the ASL measurements...
متن کاملThe partitioning of attached and detached eddy motion in the atmospheric surface layer using Lorentz wavelet ltering
Townsend's (1976) attached eddy hypothesis states that the turbulent structure in the constant stress layer can be decomposed into attached and detached eddy motion. This paper proposes and tests methodology for separating the attached and detached eddy motion from time series measurements of velocity and temperature. The proposed methodology is based on the time-frequency localization and lter...
متن کاملThe partitioning of attached anddetached eddy motion in theatmospheric surface layer usingLorentz wavelet
Townsend's (1976) attached eddy hypothesis states that the turbulent structure in the constant stress layer can be decomposed into attached and detached eddy motion. This paper proposes and tests methodology for separating the attached and detached eddy motion from time series measurements of velocity and temperature. The proposed methodology is based on the time-frequency localization and lter...
متن کاملActive Turbulence and Scalar Transport near the Forest–Atmosphere Interface
Turbulent velocity, temperature, water vapor concentration, and other scalars were measured at the canopy– atmosphere interface of a 13–14-m-tall uniform pine forest and a 33-m-tall nonuniform hardwood forest. These measurements were used to investigate whether the mixing layer (ML) analogy of Raupach et al. predicts eddy sizes and flow characteristics responsible for much of the turbulent stre...
متن کاملLarge-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996